MATH 303 — Measures and Integration
Homework 3

Problem 1. Let (X, B, 1) be a measure space. Suppose f : X — [0, 00] is a measurable function.
Define v : B — [0, 00| by
= / fdp.
E

Solution: The function f - 1y is the zero function, which is simple, so we can integrate

Prove that v is a measure.
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It remains to check that v is countably additive. Let (E,)nen be a sequence of disjoint

measurable sets. Let E' = J,cy En. Then 1g =)y 1g,. Therefore, by Theorem 3.12,

v(E) = /f lp dp = /Zf 1g,) dp = Z/f Ip, du="Y_ v(Ey).
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Problem 2. Let (X, B, 1) be a measure space, and let f : X — C be an integrable function. Prove
that for any € > 0, there exists § > 0 with the following property: if £ € B and u(F) < 9, then

| £ dp| <e.

Solution: There are several methods for solving this problem. We give four different methods
below: one using the hint provided in the homework, one using simple functions, one using
bounded functions and monotone convergence, and one using the dominated convergence theo-
rem. Some of the solutions use material that was not yet covered at the time of this assignment;
these steps are marked with an asterisk.

Method 1: Using the hint and problem 1.

By the triangle inequality for integrals (Proposition 3.16), it suffices to prove the conclusion
for | f| in place of f. Then since |f| is a nonnegative function, the set function v : B — [0, 0]
defined by v(E) = [ |f] du is a measure by Problem 1. Moreover, v(X) = [, |f| du < oo,
since f is integrable. Finally, if E' € B and u(FE) = 0, then

:/f.]lEdug/(oo-]lE)d,u:oo-u(E)IOO-O:O- (1)
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Let £ > 0. Suppose for contradiction that there exists a sequence (Ep)nen with u(E,) —
such that v(E,,) > ¢ for every n € N. By refining to a subsequence, we may assume pu(FE,) < 2
for each n € N so that » . u(En) < co. Let Ay = J,>ny En- Then 43 D A2 D ... isa
decreasing sequence, and p(Ay) <3 - u(ER) < 00, so by continuity from above (Proposition
2.15 in the lecture notes),

7 ( N AN) = lim p(Ay) < lim » p(E,) =0.
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As shown in ()}, every set of  measure zero is also a set of v measure zero, so
, ( N AN> _o. 2)
NeN
But since v(A;) < v(X) < oo, using continuity from above and monotonicity of v, we have
Ay | = 1 Ay) > liminfv(EyN) > e. 3
(p N) i, V) = it (B) = @

The statements and are contradictory. Thus, there exists § > 0 such that if £ € B and
w(E) < 6, then

/Ef d,u' <v(E)<e.

Method 2: Simple functions.
Let € > 0. By the definition of the integral,

/ If] du:sup{/ sdu:0<s<|f],ssimple}.
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Since f is assumed to be integrable, we have [ « [f] du < o0, so there exists a simple function
s: X —[0,00), 0 < s <|f], such that

e
/sdu>/ |fldp =35
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Simple functions take only finitely many different values, so s has a maximum value M =
maxgex s(z). Let 6 = 55;. If £ € B and pu(£) < 0, then

‘ /E f du‘ < /E |f| du (triangle inequality for the integral)
= /Es dp + /E(\f| —s) du (additivity of the integral*)
< /EM du + /X(|f| —s) du (monotonicity of the integral)
= Mu(E)+ /X |f| dp — /X s du (additivity of the integral*)
< Mo+ % =e.

Method 3: Monotone convergence theorem.




Let € > 0. For n € N, define

)@ i f@)] <y
Julz) = {n, if |f(z)| > n.

That is, fn(z) = min{|f(x)|,n}. Then 0 < f; < fo < ... is an increasing sequence of
measurable functions, and f,(x) — |f(x)| for every x € X. Therefore, by the monotone

convergence theorem,
/ ’f‘ dp = lim / In dp.
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Let n € N such that [y [f| du < [y fn dp+ 5. We then complete the argument the same way
as in Method 2, using f,, in place of s and n in place of M.

Method 4: Borel-Cantelli and dominated convergence.
Let € > 0. Suppose for contradiction that no such ¢ exists. Then there is a sequence of

measurable sets (Ep,)nen such that u(E,) < 27" and fEn f d,u) >e. Let f,=f-1p,, and let
B={ze€X: fo(xr) A 0}. Then B C {x € X : x € E, for infinitely many n € N}, so u(B) =0
by the Borel-Cantelli lemma. Hence, f, — 0 almost everywhere. Moreover, |f,| < |f]|, so by
the dominated convergence theorem*,

/Enfdﬂ_/xfndﬂ—)().

This is a contradiction.




